28.11.2023

Явление резонанса токов наблюдается в электрической цепи. Резонанс в электрической цепи


Реактивное сопротивление или проводимость двухполюсника, в состав которого входят конденсаторы и катушки индуктивности, в зависимости от частоты приложенного напряжения могут принимать как положительные, так и отрицательные значения. При определенных условиях реактивное сопротивление (проводимость) может оказаться равным нулю, а эквивалентное сопротивление (проводимость) всей цепи становится активным. В этом случае ток и напряжение на входе цепи совпадают по фазе. Такое явление называют резонансом , а соотношение −условием резонанса .

Эквивалентные параметры двухполюсника связаны соотношениями

и
,

поэтому условие
эквивалентно выполнению равенств
или
.

Из условий
,
могут быть определены значения параметров элементов электрической цепи, при которых наблюдается явление резонанса, а также значения частотырезонанса.

Если для двухполюсника
и
, то для определения значений резонансных частот может быть использовано любое из условий
или
.

В случае, когда активное эквивалентное сопротивление или активная эквивалентная проводимость двухполюсника равны нулю, для определения значений резонансных частот следует использовать оба условия
и
, так как при этом
. Равенства
и
выполняются, в частности, для цепей, содержащих только катушки индуктивности и конденсаторы.

Для описания частотных свойств электрических цепей широко используются частотные характеристики. Под частотными характеристиками понимают зависимости от частоты входных параметров цепи: r , x , z , g , b , y , а также величин, определяемых этими параметрами
,
и т.д. Рассмотрим далее частотные свойства простейших цепей, в которых возможен резонанс.

Резонанс в цепи при последовательном соединении элементов

Рассмотрим цепь, изображенную на рис. 10.1а

Комплексное сопротивление цепи равно

Угол сдвига между входным током и напряжением
обращается в нуль при равенстве нулю реактивного сопротивления цепи, то есть при выполнении условия
. Таким образом, состояние резонанса в цепи наступает при частоте
. Эта угловая частота называетсярезонансной . Векторная диаграмма для токов и напряжений в последовательном rLC контуре, построенная при
, изображена на рис. 10.1б. Как видно из векторной диаграммы, вектораи
равны по величине и противоположны по направлению, таким образом, напряжение
при резонансной частоте равно нулю. Индуктивное и равное ему емкостное сопротивление цепи при резонансной частоте

,

обозначаемое символом , носит названиеволнового сопротивления колебательного контура и измеряется в омах.

Отношение волнового сопротивления к активному сопротивлению в последовательном колебательном контуре называется добротностью , а величина, обратная добротности − затуханием :

,
.

Как следует из приведенных соотношений, добротность и затухание являются безразмерными величинами. Поскольку во всех элементах цепи, изображенной на рис. 10.1а протекает один и тот же ток, добротность показывает, во сколько раз напряжение на реактивных элементах при резонансе превышает входное напряжение. В реальных колебательных контурах эта величина может достигать значительного уровня. Поэтому резонанс в цепи с последовательным соединением элементов r , L , C иногда называютрезонансом напряжений .

При резонансной частоте полное сопротивление z

равно сопротивлению резистора r , ток и входное напряжение совпадают по фазе.

Таким образом, вся мощность, поставляемая в цепь источником, равна активной мощности, потребляемой единственным резистивным элементом, а реактивная мощность цепи равна нулю. Это означает, что в резонансе взаимный обмен энергии происходит только между конденсатором и катушкой индуктивности. Уменьшение энергии электрического поля при разряде конденсатора сопровождается увеличением энергии магнитного поля катушки и наоборот. Обмен энергией между источником и реактивными элементами отсутствует.

Рассмотрим частотные свойства цепи с последовательно соединенными элементами r , L , C . Будем считать, что на входе цепи действует синусоидальное напряжение с постоянной амплитудой и угловой частотой , меняющейся в пределах от 0 до ∞ . Изменение частоты приводит к изменению параметров цепиx , z , . На рисунке 10.2 приведены соответствующие частотные характеристики

,

Активное сопротивление рассматриваемой цепи не зависит от частоты, а реактивное при определенных значениях частоты (
) становится равным либо нулю либо бесконечности. Эти характерные значения называют соответственно нулями и полюсами частотной характеристики. Важным свойством функции
является то, что она монотонно возрастает при увеличении частоты
. В интервале частот
реактивное сопротивление возрастает от − ∞ до 0 и имеетемкостной характер, при
реактивное сопротивление возрастает от 0 до ∞ и имеетиндуктивный характер.

Рассмотрим зависимость тока в rLC контуре от частоты приложенного напряжения:

.

Анализ этого выражения показывает, что при
максимального значения
ток достигает в точке, соответствующей резонансной частоте.

Важной характеристикой rLC контура является ширина резонансной кривой или полоса пропускания, которую определяют как разность верхнейи нижнейчастот, для которых отношение
составляет
:

.

Частоты и, ограничивающие полосу пропускания, могут быть определены из соотношения

,

откуда следует, что на границах полосы пропускания реактивные сопротивления по абсолютной величине равны активному

.

Последнее соотношение эквивалентно равнству

,

Откуда
,
.

Разность частот и(полоса пропускания) определяется выражением

Если построить зависимость
в системе относительных координат
,
(рис.10.3), то ширина полосы пропускания оказывается равной затуханию контура.

В выражении напряжения на катушке индуктивности
оба сомножителя зависят от частоты. При
напряжение
. С увеличением частоты напряжение
возрастает и стремится к входному при
. Можно показать, что при
эта зависимость монотонна, а при
имеет максимум (рис. 10.4).

Напряжение на конденсаторе . При
ток в контуре отсутствует и все входное напряжение оказывается приложенным к конденсатору. При
напряжение на конденсаторе стремится к нулю. Для цепи, добротность которой превышает
, зависимость
имеет максимум; если
, напряжение на конденсаторе монотонно уменьшается с ростом частоты.

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими. При подсоединении колебательного контура к источнику переменного тока угловая частота источника? может оказаться равной угловой частоте? 0 , с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний? 0 , возникающих в какой-либо физической системе, с частотой вынужденных колебаний?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту? источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С - резонанс напряжений и при параллельном их соединении - резонанс токов. Угловая частота? 0 , при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс напряжений. При резонансе напряжений (рис. 196, а) индуктивное сопротивление X L равно емкостному Х с и полное сопротивление Z становится равным активному сопротивлению R:

Z = ?(R 2 + [? 0 L — 1/(? 0 C)] 2) = R

В этом случае напряжения на индуктивности U L и емкости U c равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = X L -X с становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений U L и U c , причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота?0, при которой имеют место условия резонанса, определяется из равенства ? o L = 1/(? 0 С).

Отсюда имеем

? o = 1/?(LC) (74)

Если плавно изменять угловую частоту? источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при? o), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R 1 =R 2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ? o L = 1/(? o C) . Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части
цепи при резонансе I=U?(G 2 +(B L -B C) 2)= 0 . Значения токов в ветвях I 1 и I 2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи I L и I с, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний? 0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту. Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов I L и I с. Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения

в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R 1 и R 2 , будет равенство реактивных проводимостей B L = B C ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1 L и I с равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту? о источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения I min = I a при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты? 0 .

Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах. Колебательный контур - важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.

Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.

Резонанс в цепи с последовательно соединенными элементами
(резонанс напряжений)

Для цепи на рис.1 имеет место

; (1)
. (2)

В зависимости от соотношения величин и возможны три различных случая.

1. В цепи преобладает индуктивность, т.е. , а следовательно,

Этому режиму соответствует векторная диаграмма на рис. 2,а.

2.В цепи преобладает емкость, т.е. , а значит, . Этот случай отражает векторная диаграмма на рис. 2,б.

3. - случай резонанса напряжений (рис. 2,в).

Условие резонанса напряжений

. (3)

При этом, как следует из (1) и (2), .

При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.

Пусть, например, в цепи на рис. 1 . Тогда , и, соответственно, .

Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.

Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.

Суть дела не меняется, если в цепи имеется несколько индуктивных и емкостных элементов. Действительно, в этом случае , и соотношение (3) выполняется для эквивалентных значений L Э и C Э.

Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать

. (4)

Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые I(f); и для цепи на рис. 1 при U=const.

Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:

или с учетом (4) и (5) для можно записать:

. (9)

В зависимости от соотношения величин и , как и в рассмотренном выше случае последовательного соединения элементов, возможны три различных случая.

В цепи преобладает индуктивность, т.е. , а следовательно, . Этому режиму соответствует векторная диаграмма на рис. 5,а.

В цепи преобладает емкость, т.е. , а значит, . Этот случай иллюстрирует векторная диаграмма на рис. 5,б.

Случай резонанса токов (рис. 5,в).

Условие резонанса токов или

. (10)

При этом, как следует из (8) и (9), . Таким образом, при резонансе токов входная проводимость цепи минимальна, а входное сопротивление, наоборот, максимально. В частности при отсутствии в цепи на рис. 4 резистора R ее входное сопротивление в режиме резонанса стремится к бесконечности, т.е. при резонансе токов ток на входе цепи минимален.

Идентичность соотношений (3) и (5) указывает, что в обоих случаях резонансная частота определяется соотношением (4). Однако не следует использовать выражение (4) для любой резонансной цепи. Оно справедливо только для простейших схем с последовательным или параллельным соединением индуктивного и емкостного элементов.

При определении резонансной частоты в цепи произвольной конфигурации или, в общем случае, соотношения параметров схемы в режиме резонанса следует исходить из условия вещественности входного сопротивления (входной проводимости) цепи.

Например, для цепи на рис. 6 имеем

Поскольку в режиме резонанса мнимая часть должна быть равна нулю, то условие резонанса имеет вид

,

откуда, в частности, находится резонансная частота.

Резонанс в сложной цепи

Условие резонанса для сложной цепи со смешанным соединением нескольких индуктивных и емкостных элементов, заключающееся в равенстве нулю мнимой части входного сопротивления или входной проводимости , определяет наличие у соответствующих этому условию уравнений относительно нескольких вещественных корней, т.е. таким цепям соответствует несколько резонансных частот.

Режим работы электрической цепи, при котором ток и напряжение на входе цепи совпадают по фазе, называют резонансом . При этом эквивалентное сопротивление всей цепи будет активным. В цепях, состоящих из резистивного, индуктивного и емкостного элементов, различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений может иметь место в цепи с последовательно соединенными индуктивным и емкостным элементами. Рассмотрим схему последовательного соединения резистора, индуктивности и емкости (рис. 6.1).


U Х = U L – U C – положительна, и угол сдвига фаз между током и напряжением φ> активно-индуктивным .

2. Пусть индуктивное сопротивление меньше емкостного X L < X C . Тогда и индуктивное напряжение станет меньше емкостного U L < U C , так как ток через элементы протекает один и тот же, а напряжение пропорционально току и сопротивлению. Векторная диаграмма будет иметь вид (рис. 6.3).

Реактивная составляющая напряжения U Х = U L – U C – отрицательна, и угол сдвига фаз между током и напряжением φ < 0. Такой характер цепи является активно- емкостным .

3. Пусть X L = X C , в этом случае индуктивное и емкостное напряжения равны по величине U L = U C . Так как они всегда противоположны по фазе, то они полностью компенсируют друг друга, следовательно, реактивная составляющая U Х = U L – U C = 0. Общее напряжение будет активным и совпадет по фазе с током φ = 0, следовательно, в цепи имеет место резонанс напряжений. Векторная диаграмма для данного случая показана на рис. 6.4.

Из вышесказанного следует, что условием, при котором наступит резонанс напряжений, является равенство индуктивного и емкостного сопротивлений.

Из выражения (6.1) следует, что при резонансе полное сопротивление цепи имеет активный характер.

Резонанс напряжений можно достигнуть подбором трех параметров:

1) изменением частоты колебательного контура , L , C = const;

2) изменением индуктивности контура , , С = const;

3) изменением емкости колебательного контура , , L = const .

При этом все три параметра связаны между собой.

Из условия получаем: , отсюда:

Частоту ω 0 , определяемую из такого условия, называют резонансной.

Если напряжение на зажимах цепи и активное сопротивление цепи R не изменяются, то ток при резонансе имеет максимальное значение

, так как .

Если реактивные сопротивления превосходят при резонансе активное сопротивление:

, ,

то напряжения на зажимах катушки и конденсатора могут существенно превышать напряжение на входе цепи.

Превышение напряжения на реактивных элементах над напряжением на входе принято характеризовать величиной

,

называемой волновым или характеристическим сопротивлением цепи. Волновое сопротивление численно равно индуктивному или емкостному сопротивлению на резонансной частоте.

Кратность превышения напряжения на зажимах индуктивного и емкостного сопротивлений над входным определяют отношением напряжения на реактивном элементе к напряжению на входе цепи на резонансной частоте:

Эта величина называется добротностью контура.

Величина, обратная добротности

называется затуханием контура.



Избирательные свойства колебательного контура определяются его добротностью. Чем больше добротность контура, тем более узкой будет резонансная кривая (рис. 6.5).

Избирательность контура характеризуется полосой пропускания. Полоса пропускания – это диапазон частот, для которых ток ослабляется не более чем в раз по отношению к максимальному значению

.

Ширину полосы пропускания можно определить по формуле

Рассмотрим резонансные кривые тока и напряжений (рис. 6.6).

При неизменных параметрах цепи и неизменном входном напряжении ток определится выражением

.



Рассмотрим это выражение в реперных точках: ; . При нулевой частоте ток в цепи будет постоянным, величина тока , так как конденсатор не пропускает постоянный ток, при резонансной частоте ток максимален – это признак резонанса напряжений . На высоких частотах ток , так как сопротивление катушки становится равным .

Напряжение на индуктивности пропорционально частоте, следовательно, при нулевой частоте напряжение на индуктивности . При все напряжение, подаваемое от источника, приложено к индуктивности, и .

Напряжение на емкости обратно пропорционально частоте, следовательно, при все напряжение приложено к емкости . При , так как равно нулю емкостное сопротивление.

При резонансной частоте индуктивное и емкостное напряжения равны .

Напряжение на резистивном элементе пропорционально току и, следовательно, повторяет форму кривой тока при и , при .

Рассмотрим энергетические соотношения при резонансе.

Мгновенные значения мощности на зажимах катушки и конденсатора определяются выражениями:

;

.

Так как при резонансе , эти мощности в любой момент времени равны и противоположны по знаку. Это значит, что происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, но не происходит обмена между источником и реактивными элементами, так как

и ,

то есть суммарная энергия электрического и магнитного полей остается постоянной. Энергия переходит из конденсатора в катушку в течение четверти периода, когда напряжение на конденсаторе убывает, а ток растет. В течение следующей четверти периода энергия переходит из катушки в конденсатор. Источник энергии питает только активное сопротивление.

Резонанс токов

Резонанс в идеальной цепи

Резонанс токов наступает при параллельном соединении индуктивности и емкости. Для обобщения анализов включим в цепь параллельно индуктивности и емкости активное сопротивление (рис. 6.7).


По первому закону Кирхгофа можно записать:

.

Запишем это выражение в комплексной форме:

,

где , , .

Вынесем напряжение за скобку, получим

.

Условием резонанса токов является равенство индуктивной и емкостной проводимостей:

.

Векторная диаграмма для режима резонанса представлена на рис. 6.8. При равенстве индуктивной и емкостной проводимостей будут равны и токи . Направленные в противофазе, эти токи компенсируют друг друга, в цепи остается только активная составляющая тока, и общий ток будет совпадать по фазе с напряжением . Поэтому резонанс называют резонансом токов.

Общий ток в цепи можно представить как ,

где – полная комплексная проводимость, модуль которой равен

.

С учетом условия резонанса, получим, что , то есть проводимость цепи минимальна, следовательно, и ток будет минимальным – это признак резонанса токов.

Из условия резонанса получим выражение для резонансной частоты

То есть, как и при резонансе напряжений, добиться резонанса токов можно, изменяя один из трех параметров ω , L , C .

Резонанс в реальной цепи

Реальная катушка и реальный конденсатор обладают не только реактивным, но и активным сопротивлением. Катушка – сопротивлением обмотки, конденсатор – сопротивлением токам утечки. В этом случае при большой добротности катушки или конденсатора активное сопротивление может оказаться функцией частоты.

Под добротностью катушки будем понимать отношение её индуктивного сопротивления к активному.

Под добротностью конденсатора – отношение его емкостного сопротивления к активному

.

Рассмотрим цепь, содержащую реальные катушку и конденсатор, представленную на рис. 6.9.

Условием резонанса токов в такой цепи является равенство нулю реактивной проводимости .


Комплексную проводимость цепи можно выразить через комплексные сопротивления ветвей:

Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением. Входные реактивные сопротивление и проводимость равны нулю: x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер: Z = R; сдвиг фаз отсутствует (φ=0).

Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 27.1, а).


Рис. 27.1 - Векторные диаграммы при резонансе напряжений(а) и токов(б)

Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q, определяется величинами индуктивного (или емкостного) и активного сопротивлений:

Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц.

Из условия выше следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 27.2). Емкость С0, при которой наступает резонанс, можно определить из формулы: С0=1/(ω2L).


Рис. 27.2 - Зависимости параметров режима и емкости

Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R, L и C. Векторная диаграмма ее резонансного режима приведена на рис. 27.1, б. Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления (рис. 27.3, а).


Рис. 27.3 - Разветвленная цепь (а) и ее эквивалентная схема (б)

Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0. Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю.

Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:


Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:

Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B1 и B2. Заменяя схему на рис. 27.3, а эквивалентной (рис. 27.3, б), параметры которой вычисляем по формулам, и используя условие резонанса (B = B1 – B2 = 0), снова приходим к конечному выражению.

Схеме на рис. 27.3, б соответствует векторная диаграмма, приведенная на рис. 27.4

Рис. 27.4 - Векторная диаграмма резонансного режима разветвленной цепи

Резонанс в разветвленной цепи называется резонансом токов. Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.


© 2024
exotop.ru - ExoTop - интернет и технологии